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(+)-Juvabione, a natural sesquiterpene exhibiting insect juvenile

hormone activity, has been synthesized from s-symmetric 4-(2-

formylethyl)cyclohexanone by employing organocatalytic

asymmetric aldolisation and Norrish I-type fragmentation as

the key steps.

The development of a catalytic enantioselective transformation

that enables facile access to useful chiral platforms is a major goal

in current synthetic organic chemistry.1 We have recently reported

the highly enantioselective construction of both enantiomeric

forms of endo-8-hydroxybicyclo[3.3.1]nonan-2-one (2) from the

s-symmetric keto-aldehyde 1 via intramolecular asymmetric

aldolisation employing a chiral amino acid or its tetrabutylammo-

nium salt as a catalyst,2 and demonstrated the synthetic utility of

the aldol product 2 as a chiral cyclohexanoid block based on a

novel aldolisation/retroaldolisation interconversion.3 As an alter-

native use of the building block 2, we envisage the applicability of a

photochemical process known as the Norrish I reaction4 to the

production of 3 from 2, which brings about a formal intramole-

cular asymmetric redox transformation of 1. We confirmed that 2

smoothly isomerises to 3 on irradiation with light (300 nm) in

degassed MeOH at ambient temperature for 90 min in 60% yield

(Scheme 1).

To demonstrate the synthetic utility of this methodology, we

performed an enantio- and diastereocontrolled synthesis of (+)-

juvabione (4), a natural sesquiterpene isolated together with (+)-

epijuvabione (5) and exhibiting insect juvenile hormone activity;5

the presence of two contiguous stereogenic centers on a ring and a

side chain and the fact that the (+)-(4R,19R) isomer exhibits the

highest biological activity make this compound a fascinating target

in enantio- and diastereocontrolled synthesis (Fig. 1).6

A highly enantiomerically enriched (+)-2 was obtained via

catalytic asymmetric aldolisation using 6 as a catalyst, and the

scaffold for the installation of the C1 methyl group was generated

via a two-step sequence involving MOM protection and IBX-

mediated oxidation to give (+)-7 (Scheme 2).2,3

To set the stage for the Norrish I reaction, the enone (+)-7 (.

99% ee) was treated with Me2CuLi to give the 1,4-adduct 8 in 98%

yield exclusively. The bicyclic ketone 8 was then transformed to the

TES ether 107 via a deprotection/reprotection sequence in 76%

yield over 2 steps. Having obtained the substrate for the key step,

we attempted its transformation to a cyclohexenol derivative with

a correct stereochemistry to (+)-juvabione (4) under photochemical

conditions. It was found that the selective cleavage occurred

smoothly to give the desired aldehyde 11 containing a cyclohexenol

moiety in a good reproducible yield (66%) together with a trace

amount of mechanistically predictable 3-(4-TESoxycyclohexyl)

butanoic acid methyl ester via ketene generated in situ as a by-

product. Note that structurally related compounds such as MOM

ether 8 and free alcohol 9 furnished the corresponding aldehydes

such as 12 and 13 in 69% and 60% yields, respectively, under the

same conditions, indicating the potential use of this process in the

synthesis of chiral cyclohexanoids. Also, note that the cleavage

occurred selectively at the carbon–carbon bond connected to the

bridgehead (Scheme 3).8

The isobutyl side chain of juvabione was introduced under

Imamoto’s conditions9 using the Grignard reagent–CeCl3 system

to give the secondary alcohol 14 in 81% yield as a diastereomeric

mixture (1 : 1).10 Upon sequential reactions involving BOM
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Scheme 1 Organocatalytic aldolisation and photoinduced fragmentation.

Fig. 1

Scheme 2 Reagents and conditions: a) 6, MeCN, rt, 23 h; b) MOMCl,

i-Pr2NEt, CH2Cl2, rt, 18 h; c) IBX, toluene–DMSO, 55–75 uC, 11 h.
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protection, TBAF-mediated removal of the TES group, and

MnO2 oxidation, 14 furnished the enone 15 in 92% yield. The

crucial C-1 homologation of the enone 15 was attained via the

Wittig reaction using (methoxymethyl)triphenylphosphonium

chloride and n-BuLi in THF at 230 uC to give the methyl dienol

ether 16, which was immediately treated with aqueous 10% HCl at

ambient temperature for 2 days to give the corresponding

hydroxy-a,b-unsaturated aldehyde 17 in 64% yield. While the

oxidation of resultant secondary alcohol 17 was carried out with

Dess–Martin periodinane11 to give the penultimate ketone 186a,6b

in 85% yield, it was found that using 5 mol% 1-methyl-2-

azaadamantane N-oxyl [1-Me-AZADO (19)],12 a stable nitroxyl-

radical-type oxidation catalyst that has recently been developed by

our laboratory, with bis(acetoxy)iodobenzene; this improved the

yield of oxidation up to 94%. Finally, according to Trost’s

synthesis6b 18 was subjected to Corey’s conditions13 using NaCN,

MnO2, and AcOH in MeOH at ambient temperature to give (+)-

juvabione (4), [a]D
28 = +69.1 (c 1.00, benzene) [lit.:6g [a]D

25 = +66.9

(c 2.57, benzene)], in 78% yield and complete the synthesis

(Scheme 4).

In conclusion, we have described the efficient synthesis of (+)-

juvabione (4) with excellent stereocontrol from the s-symmetric

keto-aldehyde 1 based on ‘‘asymmetric aldolisation/Norrish I

cleavage’’ methodology, in which the temporarily generated chiral

aldol motif in 2 plays essential roles in stereochemical control. The

present strategy is complementary to the aldolisation/retro-

aldolisation interconversion that we established3 and offers a

versatile use of 2 as a chiral cyclohexanoid block.
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Scheme 3 Reagents and conditions: a) MeLi, CuI, THF, 240 uC, 1.5 h;

b) LiBF4, 1,4-dioxane, H2O, 50–70 uC, 7 h; c) TESCl, imidazole, DMF, rt,

12 h; d) hn (300 nm), MeOH, rt, 1.5 h.

Scheme 4 Reagents and conditions: a) i-BuMgBr, CeCl3, THF, 0 uC, 2 h;

b) BOMCl, i-Pr2NEt, TBAI, THF, rt, 47 h; c) TBAF, THF, rt, overnight;
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